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1 Introduction

The PDE we try to solve is the one which led to the foundation of Fourier
transforms. In this report, the author has performed a detailed comparison be-
tween the results obtained for a PDE (1D Diffusion Equation) obtained using
the analytical methods and the numerical method, FDM.
Both the methods provide an approximation of their own kind. Both the ap-
proximations are discussed thoroughly in this report.

2 Our Problem

The problem we are working upon which is known as a 1D Diffusion Equa-
tion/1D Conduction Equation/1D Heat Equation is:

A rod of length L = π and thermal conductivity k = 1 has initial tempera-
ture condition f(x) = 100. Both the ends are maintained at temperature 0. So,
the boundary condition is u(0) = u(L) = 0.

The governing partial derivative equation is:

k
∂2u

∂x2
=

∂u

∂t
∀ 0 < x < L, t > 0 (1)

3 Analytical Method

The analytical method to solve this PDE provides a series solution to us where
the approximation is concerned with the number of terms of the series we have
considered. The more the terms we consider, more accurate our solution be-
comes.

Solution: Assuming the solution of PDE to be

u(x, t) = X(x)T (t) (2)
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So, on differentiating the above equation (2), we get the following:

∂u

∂x
= X ′T (3)

∂2u

∂x2
= X ′′T (4)

∂u

∂t
= XT ′ (5)

Putting values of equations (3), (4), (5) in the (1), we get the following equation.

kX ′′T = XT ′ (6)

Equating the above equation (6) to an arbitrary constant c,

kX ′′T = XT ′ = c

We can now write this as,

X ′′

X
=

c

k

T ′

T
= c

We can now write this as

X ′′ − c

k
X = 0

T ′

T
− c = 0

So,

(D2 − c

k
)X = 0

∫
T ′

T
−
∫

c = 0 (7)

Just solving the equation on the right side of (7)

lnT − ct = c1

∴ T = ect+c1 (8)

Now solving the left side of the (7)
and assuming, c

k = λ2

(Case 1) For λ2 < 0
So, The roots of the equation are m = ±λ

∴ X1 = C2e
λx + C3e

−λx

∴ X1 = c2 coshλx + c3 sinhλx (9)

Applying boundary conditions on the equation (9), we get c2 = c3 = 0, so this
solution can be regarded as trivial solution.
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(Case 2) For λ = 0
So the roots are m = 0, 0

∴ X2 = c4 + c5x (10)

On applying the boundary condition on the equation (10), we get c4 = c5 = 0,
so this solution is also a trivial solution.

(Case 3) For λ2 > 0
So the roots are m = ±iλ

∴ X3 = C6e
λx + C7e

λx

∴ X3 = c6 cosλx + c7 sinλx (11)

Applying boundary conditions on the equation (11), we get the solution,

λ =
nπ

L

So, the solution of X becomes

X(x) = c7 sin
nπ

L
x (12)

Putting the value of λ in the equation (8), we get the solution for T

T (t) = c1e
−k n2π2

L2 t (13)

Putting the values in the equation (2), We get

u(x, t) = (c1c7) sin
(nπ
L

x
)
e−k n2π2

L2 t (14)

According to the superposition principle, the solution is a series combination of
∞ number of solutions.

∴ u(x, t) = An sin
(nπ
L

x
)
e−k n2π2

L2 t (15)

Now, applyting the initial condition, u(x, 0) = f(x)

An sin
(nπ
L

x
)

= f(x)

So, the function f(x) is a Fourier Sine Series, where An is the coefficient of the
Sine term.
By this obervation,

An =

∫ L

0

f(x) sin
(nπ
L

x
)
dx (16)

It is given that f(x) = 100, So solving the above integral (16), we get,

An =
200

nπ
(1 − (−1)n) (17)

So, the final solution of the problem becomes,

u(x, t) =
200

nπ
(1 − (−1)n)e−n2t sinnx (18)
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4 Numerical Methods using Finite Difference
Method (FDM)

In numerical methods, we convert the Partial Differential Equation into a Linear
Algebraic Equation. This conversion can be done using many methods such as
Finite Difference Method (FDM), Finite Element Method (FEM), Finite Vol-
ume Method (FVM), Lattice Boltzmann Method (LBM), etc. This process of
conversion is known as Discretization where the conversion of ∂ to ∆ creates
the first approximation.
We use Numerical Methods when it is almost impossible to solve a problem
using the analytical methods.
FDM is the simplest way of discretization where direct conversion is made, e.g.
∂u ≈ ui+1 − ui−1(Using Forward Differencing and Taylor Series expansion).
The second approximation is when the domain is divided in a mesh (or grid)
and the equation is solved at every single node.

Discretization:
Using the Taylor Series expansion, the initial PDE (1) can be written as

ui
n+1 − ui

n

∆t
= k

ui+1
n − ui

n + ui+1
n

∆x2
(19)

Here,
un is the current value of function,
un+1 is the future value of the function,
ui is the value of the function at the current node,
ui+1 is the value of the function at the next/east node, and
ui−1 is the value of the function at the previous/west node.

Now, re-arranging the equation (19),

ui
n+1 = ui

n +
k∆t

∆x2
(ui+1

n − 2ui
n + ui+1

n ) (20)

5 Results and Discussions

5.1 Results From Analytical Method

The initial condition in the image 1 is wavy whereas the initial condition in the
given problem was a constant function. This is because we have just considered
first 25 terms of the series. Considering more and more terms will make the
solution more accurate. As the series is solved with time, it becomes accurate.
The most accurate result will be given when ∞ terms of series will be considered.

The code to plot the above series is:
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import numpy as np
import matp lo t l i b . pyplot as p l t

# cons tan t s f o r t h i s f unc t i on
L = np . p i # leng t h o f the rod
k = 1 # thermal d i f f u s i v i t y
tota lT = . 5 # t o t a l time to s imu la t e

n = 5 # number o f terms to inc l ude from the s e r i e s
s o l u t i o n

nx = 20 # number o f po in t s to p l o t
nt = 50 # number o f po in t s to p l o t

x = np . l i n s p a c e (0 , L , nx )
t = np . l i n s p a c e (0 , totalT , nt )

# I n i t i a l Condi t ions
u = 100∗np . ones ( nx )

def c a l c u l a t e y ( xi , t i ) :
global u , n , L , k
u = np . z e r o s ( nx )
for i in range (1 , n−1) :

u += (200/( i ∗np . p i ) ) ∗(1−(−1)∗∗ i ) ∗np . s i n ( i ∗np . p i ∗
x i /L) ∗np . exp(−k∗( i ∗np . p i /L) ∗∗2∗ t i )

# pr in t ( y )

# p l o t su r f a c e
X, T = np . meshgrid (x , t )
U = np . z e ro s ( ( nt , nx ) )

for i in range ( nt ) :
c a l c u l a t e y (x , t [ i ] )
U[ i , : ] = u
y = np . z e ro s ( nx )

f i g = p l t . f i g u r e ( )
ax = f i g . add subplot (111 , p r o j e c t i o n=’ 3d ’ )
ax . p l o t s u r f a c e (X, T, U)
ax . s e t x l a b e l ( ’ x ’ )
ax . s e t y l a b e l ( ’ t ’ )
ax . s e t z l a b e l ( ”u(x ,  t ) ” )
p l t . t i t l e ( r ”Heat  (1D D i f f u s i o n )  Equation  PDE:  $k\ f r a c {\

p a r t i a l ˆ2u}{\ p a r t i a l  xˆ2}  = \ f r a c {\ p a r t i a l  u}{\ p a r t i a l
 t }$” )

5



p l t . show ( )

Figure 1: Surface Plot of the Solution

5.2 Results from FDM

The CFD code for the discretized equation (4) is:

import numpy as np # here we load
numpy

from matp lo t l i b import pyplot as p l t # here we load
ma t p l o t l i b

6



# I n i t i a l
l = np . p i # t o t a l l e n g t h
k = 1 # thermal d i f f u s i v i t y

nx = 81 # number o f sma l l e lements , t r y changing t h i s
number from 41 to 81 and Run Al l . . . what happens?

dx = l / (nx−1) # width o f each element
nt = 1500 # number o f t imes the s imu la t i on s w i l l run ,

i s the number o f t imes t ep s we want to c a l c u l a t e
courant number = 0 .3
dt = courant number ∗ ( dx∗∗2) / k

# I n t i t a l Condi t ions
u = 100∗np . ones ( nx )

un = 100∗np . ones ( nx ) # i n i t i a l i z e a temporary array

p l t . p l o t (np . l i n s p a c e (0 , l , nx ) , un )

for n in range ( nt ) : # loop f o r va l u e s o f n from 0 to nt ,
so i t w i l l run nt t imes
un = u . copy ( ) # copy the e x i s t i n g va l u e s o f u in to un
u [1 : −1 ] = un [1 : −1 ] + ( ( k∗dt/dx∗∗2) ∗(un [ 2 : ] −2∗un

[1 : −1 ] + un [0 : −2 ] ) )

# Boundary Condi t ions
u [ 0 ] = 0 # u(0 , t ) = 0
u[ −1] = 0 # u( l , t ) = 0

p l t . p l o t (np . l i n s p a c e (0 , l , nx ) , u )
p l t . show ( )
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5.3 Comparison of Results

Figure 2: Solution of problem using analytical method in 2D Plot after time t

Figure 3: Solution of problem using numerical method, FDM, in 2D Plot after
nt iterations

Here, the blue graph shows the initial condition and the orange graph shows
the value of function after time t.
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5.4 Conclusion

For such a simple equation both the methods gave a completely similar result.
We can validate and verify our results using this study because both the meth-
ods are completely independent and similar results show that the solution of
the problem was calculated correctly.
Numerical methods are usually used only when the solution is impossible to be
calculated by the analytical methods and very expensive to be determined by
the experimental methods. For e.g., the Navier-Stoke’s equations in 1D has a
single equation with 2 unknowns, which makes it impossible to solve analyti-
cally. In such a case, we solve it using algorithms like SIMPLE and PISO where
a Poisson’s equation form has to be derived for pressure correction.

9


